Biospectroscopy and Bioimaging Laboratory

Print Friendly, PDF & Email

Biospectroscopy and Bioimaging Laboratory

The Laboratory of Biospectroscopy and Bioimaging (LBB) contains advanced measurement instruments along with auxiliary optical, spectroscopic and photodetector components, which enables undertaking innovative and original research in a wide area of biospectroscopy and bioimaging.

In particular, the laboratory allows for:

  • designing new, unique, and personalised experiments in biospectroscopy and bioimaging domain based on a fully automated optical fluorescence microscope, programmable array microscope and other advanced laboratory equipment
  • designing, synthesis and bio-functionalization of lanthanide-doped luminescent nanoparticle labels, as well as their versatile spectroscopic characterisation, further optimisation and application in vitro


We are focused on luminescent nanoparticles’ chemistry and physics, light, spectroscopy and design of optical instrumentation to design novel luminescent materials and (bio)detection methods or instruments.

  • Cooperation with partners from academia and industry within fundamental as well as applied research projects
  • Designing, automation and testing specialized biodetection methods and building prototype instruments
  • Expert consultations in the areas of biospectroscopy, biodetection and bioimaging
  • Training courses in biospectroscopy, laser safety and applications of nanoluminophores
  • Fully automated inverted fluorescence microscope CarlZeiss AxioObserver equipped with:
    – dry objectives 10 x, 20 x, 40 x
    – immersion objectives 40x, 63x (NA=1.43)
    – ultrasensitive 1-Megapixel cameras (EMCCD Rolera EMc2) in dual-camera configuration that enable simultaneous image recording in the same area of the sample in 2 spectral ranges
    – standard 5 Mpix colour camera (Zeiss MRc5)
    – capacity to record fluorescence spectra from under the microscope with ultrasensitive spectrograph
    – capacity to work in white light, phase contrast, and Nomarski interference contrast imaging modes
    – full automation, with the option to integrate the automated microscope into custom control and measurement applications (LabView)
    – CO2 incubator + temperature control for long-term in vitro measurements
    – capability to carry out imaging in up-conversion mode (980 nm excitation, emission in Vis range) or NIR mode (808 nm excitation, 840-1050 nm emission)
    – capability to provide dynamic, spatially controlled initiation of photochemical reactions (e.g. photosensitizers’ activation, photolithography, etc.) using DMD technology (Digital Micro-mirror Device, Texas Instruments) integrated with the microscope. Available LED source of 375 nm wavelength and 1024×768 array allows for optical resolutions of around 10 μm
  • Extensive selection of opto-mechanical components that enables building custom optical and measurement setups
  • A set of optical-fiber semiconductor and “free-running” CW, quasi-CW and pulsed lasers (including 980 nm CW 3W, 808 nm CW 2W, and picosecond lasers up to 40 MHz at 375 and 405 nm wavelength)
  • Tunable Ti-sapphire laser in 700 – 1000 nm and 350 – 500 nm spectral range, under 532 nm pump (>100 mJ in 10 ns pulse)
    Photomultiplier tubes (400 – 1000 nm) as photodetectors and photon counters
  • Power and energy meters, digital oscilloscopes, oscilloscope cards, function generator
  • Shemrock SR303i (Andor) spectrograph with ultrasensitive EM-CCD detector (Newton 1600×400 back-thinned) and a photomultiplier
    tube, as well as 3 gratings and customized light coupling system
    Miniature CCD spectrophotometers (OceanOptics), including HR4000 + and cooled QE65000
  • A set of sources, detectors and devices for measuring ultrashort fluorescence lifetime (pico-nanoseconds) using the Time Correlated
    Single Photon Counting (TCSPC) technique Capability to develop and automate custom control applications (LabView + NI Vision) and optical/spectroscopic measurement systems
  • Fully equipped chemical and spectroscopy laboratory, which are ready for the synthesis and spectroscopic characterization of nanocolloidal luminophores (lanthanide doped NaYF4, CaF2, core-shell structures, CuInS2 /ZnS/CdS etc. quantum dots, colloidal gold/silver nano-particles)

Katarzyna Prorok PhD – Testing Engineer

Małgorzata Misiak PhD – Testing Engineer


„Synteza i optymalizacja właściwości spektroskopowych koloidalnych nanokrystalicznych tlenków domieszkowanych jonami lantanowców”. National Centre of Science (NCN, Poland), Preludium project, grant no. [09.2014 – 09.2016] – K.Prorok


National Centre of Science (NCN, Poland), Preludium project, grant no. DEC-2013/11/N/ST5/02716. [09.2014 – 09.2016] – M.Misiak


Nanoparticle Assisted Molecular Imaging and Sensing (NAOMIS)  1.2012-12.2015 – “The Application of Nanotechnology in Advanced Materials” – NanoMat (POIG.01.01.02-02-002/08) financed by the European Regional Development Fund (Operational Programme Innovative Economy 1.1.2).

  1. Optical Forces at the Nanoscale: Size and Electrostatic Effects, Paloma Rodríguez-Sevilla, Katarzyna Prorok, Artur Bednarkiewicz, Manuel I. Marqués, Antonio García-Martín, José García Solé, Patricia Haro-González ,Daniel Jaque, Nano Lett., 2018, 18 (1), pp602–609
  2. Shaping Luminescent Properties of Yb3+ and Ho3+ CoDoped Upconverting Core–Shell βNaYF4 Nanoparticles by Dopant Distribution and Spacing, Aleksandra Pilch, Chrystian W Aleksandra Pilch, Christian Würth, Martin Kaiser, Dominika Wawrzyńczyk, Michalina Kurnatowska, Sebastian Arabasz, Katarzyna Prorok, Marek Samoc, Wiesław Strek, Ute Resch-Genger, Artur Bednarkiewicz, Small 2017, 13, 1701635
  3. Size dependent sensitivity of Yb,Er up-converting luminescent nano-thermometers, Łukasz Marciniak, Katarzyna Prorok, Artur Bednarkiewicz, Journal of Material Chemistry C, 5 (2017) 31
  4. Toward Controlled Photothermal Treatment of Single Cell: Optically Induced Heating and Remote Temperature Monitoring in Vitro through Double Wavelength Optical Tweezers, Sławomir Drobczyński, Katarzyna Prorok, Konstantin Tamarov, Kamila Duś-Szachniewicz, Vesa-Pekka Lehto, Artur Bednarkiewicz, ACS Photonics, 4, (2017), 8
  5. Phosphor-Assisted Temperature Sensing and Imaging Using Resonant and Nonresonant Photoexcitation Scheme, Artur Bednarkiewicz, Karolina Trejgis, Joanna Drabik, Agnieszka Kowalczyk, Łukasz Marciniak, ACS Applied Materials & Interfaces 9(49) (2017)
  6. Biofunctionalized upconverting CaF2:Yb,Tm nanoparticles for Candida albicans detection and imaging, Małgorzata Misiak, Michał Skowicki, Agnieszka Kowalczyk, Katarzyna Prorok, Sebastian Arabasz, Tomasz Lipiński, Artur Bednarkiewicz, Nano Research, 10 (2017) 10.
  7. Rozdział 8: Active-Core-Active-Shell Upconverting Nanoparticles: novel mechanisms, features and perspectives for bio-labeling, Katarzyna Prorok, Dominika Wawrzyńczyk, Małgorzata Misiak, Artur Bednarkiewicz, w książce “Upconverting Nanomaterials: Perspectives, Synthesis, and Applications”, CRC Press, Ed. Claudia Altavilla
  8. Energy Migration Up-conversion of Tb3+ in Yb3+ and Nd3+ Codoped Active-Core/Active-Shell Colloidal Nanoparticles, Katarzyna Prorok, Mirosława Pawlyta, Wiesław Stręk, Artur Bednarkiewicz, Chemistry of Materials, 28 (2016) 7
  9. The effect of intentional postassium co-doping on the luminescent properties of Yb3+ and Tm3+ doped α-NaF4 core-shell nanoparticles, Małgorzata Misiak, Wiesław Stręk, Sebastian Arbasz, Artur Bednarkiewicz, Journal of Luminescence 178 (2016), Pages 34-42
  10. A broadening temperature sensitivity range with core-shell YbEr@YbNd double ratiometric optical nanothermometer, Łukasz Marciniak, Katarzyna Prorok, Laura Francés-Soriano, Julia Pérez-Prieto, Artur Bednarkiewicz Nanoscale 9 (2016)
  11. Water dispersible LiNdP4O12 nanocrystals: New multifunctional NIR–NIR luminescent materials for bio-applications, Łukasz Marciniak, Katarzyna Prorok, Artur Bednarkiewicz, Agnieszka Kowalczyk, Dariusz Hreniak, Wiesław Stręk, 176 (2016)
  12. Energy transfer in diiodoBODIPY-grafted upconversion nanohybrids, Laura Frances-Soriano, Marta Liras, Agnieszka Kowalczyk, Artur Bednarkiewicz, Maria Gonzalez-Bejar, Julia Perez-Prieto, Nanoscale 8(1) (2016)
  13. Neodymium-doped nanoparticles for infrared fluorescence bioimaging: The role of the host, Del Rosal Blanca, Perez Albert, Misiak, Małgorzata, Bednarkiewicz Artur, Vanetsev Alexander, Orlovskii Yurii, Jovanovic Dragana, Dramicanin Miroslav, Rocha Ueslen, Kumar Kagola, Jacinto Carlos, Navarro Elizabeth, Martín Rodríguez Emma, Pedroni Marco, Speghini Adolfo, A. Hirata Gustavo, Martin I and Jaque Daniel, Journal of Applied Physics. 118 (2015)
  14. Upconverting nanoparticles: assessing the toxicity, Anna Gnach, Tomasz Lipiński, Artur Bednarkiewicz, John Capobianco, Chemical Society Reviews, 44(6), 1561–84. (2015)
  15. Modulation of the up-converting optical properties of Yb3+/Tm3+ doped α-NaYF4 nanocrystals with calcium co-doping, Małgorzata Misiak, Artur Bednarkiewicz, Wiesław Stręk, Journal of Luminescence, 169 (2015), Pages 717-721
  16. Up-converting NaYF4: 0.1Tm3+, 20%Yb3+ nanoparticles as luminescent labels for deep-tissue optical imaging, Anna Gnach, Katarzyna Prorok, Małgorzata Misiak, Bartłomiej Cichy, Artur Bednarkiewicz, Journal of Rare Earths, 32 (2014) 207
  17. Influence of Li+ doping on up-conversion and structural properties of Yb3+/Tm3+-doped cubic NaYF4 nanocrystals, Małgorzata Misiak, Bartłomiej Cichy, Artur Bednarkiewicz, Wiesław Stręk, Journal of Luminescence, 145 (2014), Pages 956-962
  18. The impact of shell host (NaYF4/CaF2) and shell deposition method on the up-conversion enhancement in Tb3+, Yb3+ codoped colloidal α-NaYF4 core-shell nanoparticles, Katarzyna Prorok, Artur Bednarkiewicz, Bartłomiej Cichy, Anna Gnach, Małgorzata Misiak, Marcin Sobczyk, Wiesław Stręk, Nanoscale, 6 (2014) 1855
  19. Energy up-conversion in Tb3+/Yb3+ co-doped colloidal α-NaYF4 nanocrystals, Katarzyna Prorok, Anna Gnach, Artur Bednarkiewicz, Wiesław Stręk, Journal of Luminescence, 140 (2013) 103
  20. Thulium concentration quenching in the up-converting colloidal Tm3+/Yb3+ α-NaYF4 nanocrystals, Małgorzata Misiak, Katarzyna Prorok, Artur Bednarkiewicz, Wiesław Stręk, Optical Materials, 35 (2013) 1124
  21. Lanthanide-Doped up-converting nanoparticles: merits and challenges, Anna Gnach, Artur Bednarkiewicz, Nanotoday 7 (2013), Pages 532-563
  22. Biologiczne zastosowania nanoluminoforów domieszkowanych lantanowcami, Małgorzata Misiak, Katarzyna Prorok, Artur Bednarkiewicz, Wiadomości Chemiczne, 66 (2012)
Print Friendly, PDF & Email
Posted by abachmatiuk, Posted on 08.10.2015