Print Friendly, PDF & Email

Laser Sensing Laboratory

Cooperation with academic and industrial partners in applied and basic research projects.

Assistance in all stages of electro-optical system development (designing, building, testing, deploying).

Our current research interest is focused on the development of new optical-based sensor technologies for industrial and scientific applications, including climate studies, safety and security, medical diagnostics and industrial processes control. These instruments can be used in remote sensing configuration or as point sensors for in-situ chemical analysis.


Head of the prototype sensor for gas detection in near-infrared spectral region

Important part of our activities is the development of new sensing techniques such as Chirped Laser Dispersion Spectroscopy, CLaDS. In CLaDS spectroscopic information is encoded into frequency (not ammplitude) of RF beatnote and is retrieved through frequency demodulation process, well-known from FM radio. This makes CLaDS well suited for applications where transmittion fluctuations can occur (such as remote open-path sensing).

More about CLaDS here and here.

With our experience in the area of fiber lasers/amplifiers and highly specialized instrumentation (such as Large Diameter Splicer – LDS System from 3SAE) we also conduct research on the development of fused fiber components fabricated by fiber bundle/fiber tapering such as power combiners and mode field adapters for medium and high power fiber amplifiers and lasers.

Drawing24   Drawing25

Large Diameter Fiber Fusion Splicing System (LDS)


The laboratory is equipped with state-of-the-art instrumentation supporting technology development in applied optics and electronics. This includes:

  • RF spectrum analyzers (up tp 25 GHz)
  • Signal (up to 20 GHz) and vector (up to 6 GHz) generators
  • Function generators and oscilloscopes (up to 10 GHz)
  • Tunable laser 1520 nm – 1630 nm and multiple semiconductor lasers (including DFB @1550, 1575, 1650, czy 2003 nm) with drivers and temperature controllers
  • Optical spectrum analyzers from 400 nm to 2200 nm
  • Thermal camera FLIR SC620
  • Large Diameter Fiber Fusion Splicing System 3SAE/LDS and fusion splicer for standard and PM fibers


EIT+ Wroc³awskie Centrum Badañlaboratoriafot. Lukasz GizanikodemEIT+ Wrocławskie Centrum Badańlaboratoriafot. Lukasz GizaEIT+ Wrocławskie Centrum Badańlaboratoriafot. Lukasz GizaDrawing25

Piotr Jaworski – PhD Eng.

Dorota Stachowiak – PhD Eng.



Reference gas cells based on hollow-core fibers and their application in gas sensing

Project supported by the MINIATURA award from the National Research Centre, Poland. PI: Piotr Jaworski. Project realization: xx.xx.2017 – xx.xx.2018


Pump and signal power combiner with improved signal transmission efficiency

Project supported by the PRELUDIUM award from the National Research Centre, Poland. PI: Dorota Stachowiak. Project realization: 15.06.2016 – 14.06.2019


Exploring new techniques in high-resolution spectroscopy

Project supported by the SONATA award from the National Research Centre, Poland. PI: Michał Nikodem. Project realization: 14.09.2015 – 13.03.2018


Laser-based systems for hydrogen sulfide detection

Project supported by the LIDER award from the National Centre for Research and Development, Poland. PI: Michał Nikodem. Project realization: 01.01.2015 – 30.09.2018



Developing new methods for sensitive gas sensing and its application to methane monitoring

Project supported by the Foundation for Polish Science, co-financed from EU funds within Action 1.2 “Strengthening the personnel potential of science” POIG 2007-2013. PI: Michał Nikodem. Project realization: 01.07.2013 – 30.06.2015.

pobrane (2)


D. Stachowiak, „High-Power Passive Fiber Components for All-Fiber Lasers and Amplifiers Application—Design and Fabrication,” Photonics 5(4) (2018) link

P. Kaczmarek, D. Stachowiak, K. Abramski, „40 W All-Fiber Er/Yb MOPA System Using Self-Fabricated High-Power Passive Fiber Components,” Appl. Sci. 8, 869 (2018) link

M. Nikodem, G. Wysocki, „Localized Chemical Detection in Quasi-Distributed Multi-Node Fiber-Ring Network,” Journal of Lightwave Technology, DOI: 10.1109/JLT.2018.2859830 (2018)

D. Stachowiak, P. Jaworski, P. Krzaczek, G. Maj, M. Nikodem, „Laser-Based Monitoring of CH4, CO2, NH3, and H2S in Animal Farming—System Characterization and Initial Demonstration,” Sensors 18, 529 (2018). link

K. Krzempek, A. Hudzikowski, A. Głuszek, G. Dudzik, K. Abramski, G. Wysocki, and Michał Nikodem, „Multi-pass cell-assisted photoacoustic/photothermal spectroscopy of gases using quantum cascade laser excitation and heterodyne interferometric signal detection,” Applied Physics B 124, 74 (2018). link

K. Krzempek, G. Dudzik, K. Abramski, G. Wysocki, P. Jaworski, and Michał Nikodem, „Heterodyne interferometric signal retrieval in photoacoustic spectroscopy,” Optics Express 26, 1125-1132 (2018). link

D. Tomaszewska, P. Jaworski, M. Nikodem, „Frequency-multiplexed gas sensing using chirped laser molecular spectroscopy,” Opto-electronics Review 26, 103-107 (2018). 


M. Nikodem, K. Krzempek, D. Stachowiak, G. Wysocki, „Quantum cascade laser-based analyzer for hydrogen sulfide detection at sub-parts-per-million levels,” Optical Engineering, 57(1), 011019 (2017). link

K. KrzempekK. Abramski and M. Nikodem, “All-fiber mid-infrared difference frequency generation source and its application to molecular dispersion spectroscopy,” Laser Physics Letters 14 (2017)

D. Stachowiak, P. Kaczmarek, K. Abramski, „(5+1)x1 pump and signal power combiner with 9/80 um feed-through signal fiber,” Optics and Laser Technology 93, 33-40 (2017) link

M. Nikodem, G. Wysocki, „Differential Optical Dispersion Spectroscopy,” IEEE Journal of Selected Topics in Quantum Electronics 23, 1-5 (2017)


M. Nikodem, „Chirped laser dispersion spectroscopy for laser-based hydrogen sulfide detection in open-path conditions,” Optics Express 24, A878-A884 (2016) link

M. Nikodem, „Chirped laser dispersion spectroscopy with parametric downconversion for open-path gas sensing,” Optical Engineering 55, 044103 (2016)

M. Czajkowski, J. Cybińska, M. Woźniak, P. Słupski, M. Nikodem, F. Granek, K. Komorowska, „Incorporation of luminescent semiconductor nanoparticles into liquid crystal matrix,” Journal of Luminescence 169, 850-856 (2016)


M. Nikodem, D. Stachowiak and P. Jaworski, „Towards laser-based open-path detection of hydrogen sulfide,”, Proc. SPIE 10142, 20th Slovak-Czech-Polish Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 101420I (December 24, 2016)

P. Jaworski, D. Stachowiak and M. Nikodem, „Standoff detection of gases using infrared laser spectroscopy”, Proc. SPIE 9899, Optical Sensing and Detection IV, 98990Q (April 29, 2016)


G. Plant, M. Nikodem, P. Mulhall, R. Varner, D. Sonnenfroh, and G. Wysocki „Field Test of a Remote Multi-Path CLaDS Methane Sensor,” Sensors 15, 21315-21326 (2015) link

P. Słupski, M. Nikodem, L. Chai and K. Komorowska „Fabrication of multilevel resist patterns by using a liquid crystal mask,” Optical Engineering 54, 115107 (2015)

M. Nikodem, „Chirped lasers dispersion spectroscopy implemented with an electro-optical intensity modulator – signal strength and shapes under different experimental conditions,” Optics Express 23, 8227-8234 (2015) link

Y. Wang, M. Nikodem, … G. Wysocki, „Shot-noise Limited Faraday Rotation Spectroscopy for Detection of Nitric Oxide Isotopes in Breath, Urine, and Blood,” Scientific Reports 5, Article number: 9096 (2015) link

M. Nikodem, G. Plant, D. Sonnenfroh and G. Wysocki, „Open-path Sensor for Atmospheric Methane Based on Chirped Laser Dispersion Spectroscopy,” Applied Physics B 119, 3-9 (2015)


M. Nikodem, „Standoff detection of trace chemicals with laser dispersion spectrometer”, Proc. SPIE 9486, Advanced Environmental, Chemical, and Biological Sensing Technologies XII, 94860M (May 13, 2015)


M. Nikodem, K. Krzempek, R. Karwat, G. Dudzik, K. Abramski, and G. Wysocki, „Chirped Laser Dispersion Spectroscopy with DFG source,” Optics Letters 39, 4420-4423 (2014)

M. Nikodem, K. Krzempek, K. Zygadlo, G. Dudzik, A. Waz, K. Abramski, K. Komorowska, „Intracavity polarization control in mode-locked Er-doped fibre lasers using liquid crystals,” Opto-Electronics Review 22, 113-117 (2014)


M. Nikodem, „Recent developments in remote gas detection using molecular dispersion sensing”, Proc. SPIE 9441, 19th Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics, 94411N (December 5, 2014)


M. Nikodem, G. Wysocki, „Suppressing the influence of optical fringes in dispersion spectroscopy,” Photonics Letters of Poland 5, 152-154 (2013) link

M. Nikodem, and G. Wysocki, „Measuring optically thick molecular samples using chirped laser dispersion spectroscopy,” Optics Letters 38, 3834-3837 (2013)

Print Friendly, PDF & Email
Posted by abachmatiuk, Posted on 08.10.2015