Luminescent Materials Laboratory

Print Friendly, PDF & Email

Luminescent Materials Laboratory

The laboratory is suited to perform synthesis of materials with well-designed luminescent properties. Next a comprehensive characterization of their luminescent properties and a composition analysis can be made. These materials have applications in various areas, from modern lighting (e.g. of LED type), through anti-counterfeiting marking, to advanced medical technologies. The Luminescent Materials Laboratory consists of modern equipped laboratories of Organic Synthesis, Inorganic Synthesis, Special Synthesis Methods and Clean Synthesis. In these laboratories there is possible to synthesize organic compounds, rare earth based complexes and materials as well as nanoparticles. An available equipment allows to carry out reactions in solution or in solid phase using a conventional thermal heating or microwave irradiation, at reduced or elevated pressure. Microwave reactors allow to perform up to 10 reactions at the same time. Glove boxes allow to obtain compounds requiring an inert atmosphere during the synthesis. A preparation of different samples, as for example industrial samples, pharmaceutical, or environmental ones for analysis can be performed using a multi- task apparatus for the extraction, spray drying, vacuum drying and lyophilization. A post reaction heat-treatment can be performed in high-temperature furnaces. A full spectroscopic characterization of obtained substances can be made in Optical Spectroscopy Laboratory, which is a part of Luminescent Materials Laboratory. 

PRIMARY SERVICES:

  • synthesis of compounds with defined luminescent properties, as for example a wide emission range, characteristic and unique emission spectra,
  • synthesis of organic compounds
  • preparation of different samples (industrial, pharmaceutical, environmental) by lyophilization, high-temperature treatment, spray-drying, extraction and in dry and oxygen-free atmosphere, etc.

LABORATORY EQUIPMENT:

 

  • MICROWAVE REACTORS, emitting a homogeneous microwave field, have possibility of temperature, heating power and pressure programming; they can be air cooled, – a low-pressure microwave reactor, model RotoSYNTH (Milestone Inc.) gives an opportunity to perform a reaction both in liquid and solid phase at reduced pressure, and at microwave power to 1200 W, – a high-pressure microwave reactor, model MicroSYNTH (Milestone Inc.) gives a possibility to conduct up to 10 reactions at the same time, equipped with pressure vessels of a capacity of 35 mL and maximum working pressure to 30 bar, and a microwave power to 1600 W.

 

  • HIGH-PRESSURE REACTORS FOR SYNTHESES, models 4575B and 4576B (Parr Instruments) – with a capacity of 250 and 500 mL, maximum working pressure to 345 bar and temperature of 500°C, equipped with a mechanical stirrer.

 

  • GLOVE BOXES, I.A. GLOVE BOX WITH 4 OPERATE GLOVES, model Unilab Pro Eco SP 2000/78 (M. Braun Inertgas-Systeme GmbH) – designed do work under oxygen and water-free atmosphere, and equipped with a Leica M60 microscope.

 

  • AUTOMATIC SOXHLET EXTRACTOR, model B-811 (Büchi Labortechnik AG) – constructed from four independent working stations to perform parallel extraction from different kind of solid and half-solid matrixes, allows to conduct a process (a drying phase) under an inert atmosphere, is intended i.a. for assay substances in various industrial and environmental samples.

 

  • SPRAY DRYER, model B-290 (Büchi Labortechnik AG) is dedicated for drainage of products in the form of a solution to the form of a powder, can be used in a food industry to prepare for example a powdered milk, in a pharmaceutical industry to dry extracts as well as in cosmetic and chemical industries.

 

  • LYOPHILIZER, model Alpha 2-4 LDPlus (Martin Christ Gefriertrocknungsanlagen GmbH) is intended for lyophilization of biological materials, food, pharmacological products, precipitates, chemical products and archaeological materials.

 

  • HIGH TEMPERATURE FURNACES: – compact high-temperature chamber furnaces, model LHT 8/18/P310 (Nabertherm), with a maximum working temperature up to 1800 °C and a capacity of 8 L, – muffle furnaces, models: L9/12/P330, L15/13/P330, L24/12/P330 (Nabertherm), with a maximum working temperature up to 1300 °C and a capacity from 9 to 24 L.

Joanna Cybińska PhD – Laboratory Manager

Magdalena Wilk-Kozubek PhD.Eng.

Maciej Czajkowski  PhD.Eng.

Bartłomiej Potaniec MSc

Marcin Skoreński PhD.Eng.

Anna Madej MSc

„LaserMark”, financed by: NCBiR „Security and Defense of Country”,

project Leader: PWPW S.A. (Polish Security Printing Works), realization of the project in years: 2016-2020 

realization of the project in Luminescent Materials and Optical Spectroscopy Laboratories in years: 2016-2018

principal investigator: Joanna Cybińska

„Fabrication and characteristics of new liquid-crystalline materials comprising chiral ionic compounds for application in light modulators”.

„CILC”,  finananced by National Science Centre, Sonata-11,

realization of the project in Luminescent Materials and Optical Spectroscopy Laboratories in years:: 2017-2019

principal investigator: Maciej Czajkowski

Below, you can find the publications of the laboratory staff:

  1. “Open-framework manganese(II) and cobalt(II) borophosphates with helical chains: structures, magnetic, and luminescent properties”,
    M. Li, V. Smetana, M. Wilk-Kozubek, Y. Mudryk, T. Alammar, V. K. Pecharsky, A.-V. Mudring, 
    InorgChem., 2017,
    DOI: 10.1021/acs.inorgchem.7b01423.
  2. “Synthesis, structural characterization and computational studies of catena-poly[chlorido[m3-(pyridin-1-ium-3-yl)phosphonato-k3O:O’:O”]zinc(II)]”,
    M. Wilk-Kozubek, K. N. Jarzembska, J. Janczak, V. Videnova-Adrabinska,
    Acta Cryst., 2017, C73, 363–368.
    DOI: 10.1107/S2053229617004478 
  3. “Cholesteric gratings induced by electric field in mixtures of liquid crystal and novel chiral ionic liquid”, 
    M. Czajkowski, J. Klajn, J. Cybińska, J. Feder-Kubis, K. Komorowska,
    Liq. Cryst., 2017, 44, 911-923.
    DOI: 10.1080/02678292.2016.1254825 
  4. “Design of LaPO4:Nd3+materials by using ionic liquids”,
    J. Cybińska, M. Guzik, C. Lorbeer, E. Zych, Y. Guyot, G. Boulon, A.-V. Mudring
    Optical Materials, 2017, 63, 76-87.
    DOI: 10.1016/j.optmat.2016.09.025 
  5. “Ionic liquid supported synthesis of nano-sized rare earth doped phosphates”,
    J. Cybińska, M. Guzik, C. Lorbeer, E. Zych, A.-V. Mudring
    Journal of Luminescence, 2017, 189, 99-112.
    DOI: 10.1016/j.jlumin.2017.02.033
  6. “Breaking the paradigm: record quindecim charged magnetic ionic liquids”,
    D. Prodius, V. Smetana, S. Steinberg, M. Wilk-Kozubek, Y. Mudryk, V. K. Pecharsky, A.-V. Mudring, 
    Mater. Horiz., 2017, 4, 217–221.
    DOI: 10.1039/C6MH00468G 
  7. “A new photoluminescent feature in LuPO4:Eu thermoluminescent sintered materials”
    J. Zeler, J. Cybińska, E. Zych 
    RSC Advances, 2016, 6, 57920-57928. 
    DOI: 10.1039/C6RA09588G 
  8. “An electron-deficient azacoronene obtained by radial π extension”
    M. Żyła-Karwowska, H. Zhylitskaya, J. Cybińska, T. Lis, P. J. Chmielewski, M. Stępień
    Angewandte Chemie-International Edition, 2016, 55, 14658-14662.
    DOI: 10.1002/anie.201608400 
  9. “Bandgap engineering in π-extended pyrroles : a modular approach to electron-deficient chromophores with multi-redox activity”
    H. Zhylitskaya, J. Cybińska, P. J. Chmielewski, T. Lis, M. Stępień
    Journal of the American Chemical Society, 2016, 138, 11390-11398.
    DOI: 10.1021/jacs.6b07826 
  10. “Controllable synthesis of nanoscale YPO4:Eu3+ in ionic liquid”
    J. Cybińska, M. Woźniak, A. V. Mudring, E. Zych
    Journal of Luminescence, 2016, 169, 868-873.
    DOI: 10.1016/j.jlumin.2015.07.008 
  11. “Incorporation of luminescent semiconductor nanoparticles into liquid crystal matrix”,
    M. Czajkowski, J. Cybińska, M. Woźniak, P. Słupski, M. Nikodem, F. Granek,K. Komorowska,
    J.  Lumin., 2016, 169, 850-856.
    DOI: 10.1016/j.jlumin.2015.08.011 
  12. “SrS:Ce and LuPO4:Eu sintered ceramics : old phosphors with new functionalities” 
    E. Zych, D. Kulesza, J. Zeler, J. Cybińska, K. Fiączyk, A. Wiatrowska
    ECS Journal of Solid State Science and Technology, 2016, 5, R3078-R3088. 
    DOI: 10.1149/2.0101601jss 
  13. “Synthesis of a peripherally conjugated 5-6-7 nanographene”
    M. Żyła, E. Gońka, P. J. Chmielewski, J. Cybińska, M. Stępień
    Chemical Science, 2016, 7, 286-294. 
    DOI: 10.1039/C5SC03280F 
  14. “Anomalous red and infrared luminescence of Ce3+ ions in SrS:Ce sintered ceramics”
    D. Kulesza, J. Cybińska, L. Seijo, Z. Barandiarán, E. Zych
    Journal of Physical Chemistry C, 2015, 119, 27649-27656. 
    DOI: 10.1021/acs.jpcc.5b06921

Below, you can find photographs of the facilities, equipment and various works from Luminescent Materials Laboratory.

 

Laboratory of Inorganic and Organic Synthesis

 

Laboratory of High Purity Synthesis

Laboratory of Special Synthesis Methods

Furnace Room

 Mini Spray Dryer B-290 (Büchi Labortechnik AG)

Lyophfilizer Alpha 2-4 LDPlus (Martin Christ Gefriertrocknungsanlagen GmbH)

Automatic Soxhlet Ekstractor B-811 (Büchi Labortechnik AG)

 4-Glove box Unilab Pro Eco SP 2000/78 (M. Braun Inertgas-Systeme GmbH)

Muffle furnace (Nabertherm)

High-pressure reactor for syntheses  4576B (Parr Instruments)

Microwave reactors RotoSynth i MicroSynth (Milestone)

Aluminium-silicon monoliths doped with lanthanide ions

Chemiluminescence

Separation of fluorescent materials on the chromatographic column 

Dispersion of light on cholesteric structures of liquid crystals 

Print Friendly, PDF & Email

Autor: PORT - Polski Ośrodek Rozwoju Technologii, Opublikowano: 10.02.2016
Posted by PORT - Polski Ośrodek Rozwoju Technologii, Posted on 10.02.2016
Back
plusfontminusfontreloadfont